Стартап Inversion Semiconductor из Сан-Франциско сообщил о продвижении в разработке компактного ускорителя частиц, который в принципе способен решить все современные проблемы производства чипов — от наращивания скорости производства до снижения размеров транзисторов. Компактный ускоритель — это путь к мощнейшему источнику света для полупроводниковых литографов, но проблем с его разработкой так много, что перспективы проекта пока неясны.

Мини-синхротрон ускорит производство передовых чипов в 15 раз, но сначала придётся решить ряд проблем

Сегодня безусловным лидером в создании передовых литографов является нидерландская компания ASML. Она освоила производство литографов с длиной волны 13,5 нм. Для создания света в них используется лазерно-продуцируемая плазма. Источник света интегрирован в литограф, что позволяет создавать достаточно компактные установки. Существенным ограничением является мощность излучения, которая пока удерживается на уровне 250 Вт. Это тормозит скорость обработки пластин и производительность. Компания ASML находится на раннем этапе разработки 1-кВт источников света EUV, обещая в ближайшей перспективе начать внедрение 740-Вт источников.

Предложенный компанией Inversion Semiconductor ускоритель частиц теоретически способен создать свет с длиной волны от 20 до 6,7 нм мощностью порядка 10 кВт. Подобный источник света может в 15 раз ускорить обработку полупроводниковых пластин на одной установке или запустить параллельную обработку с меньшей скоростью одновременно на дюжине сканеров, что существенно снизит себестоимость производства.

Предложение Inversion Semiconductor — это не новость. Учёные и индустрия разрабатывают проекты по использованию ускорителей частиц для целей полупроводниковой литографии. В России, например, для сходных задач рассматривают вариант восстановления зеленоградского синхротрона. Над похожими проектами работают китайцы, а также заинтересовалась Intel. Изюминка проекта Inversion Semiconductor — компактность. Предложенная компанией установка в 1000 раз меньше задействованных в науке синхротронов. По сути, она может быть размером с обычный письменный стол, а это прямой путь в промышленные цеха для массового производства чипов.

Проект Inversion Semiconductor поддержала инвестиционная компания Y-Combinator, которая выделила помещения для разработки. В основе будущей установки лежит хорошо известное физикам явление лазерно-волнового ускорения (LWFA, Laser Wakefield Acceleration). Это метод ускорения заряженных частиц, например, электронов, с использованием интенсивных лазерных импульсов. Мощный лазерный луч проходит через плазму, создавая в ней сильные электрические поля, которые формируют плазменную волну (или «кильватерную волну»). Эти поля могут ускорять частицы до релятивистских энергий на очень коротких расстояниях — порядка сантиметров, достигая градиентов ускорения в тысячи раз выше, чем в традиционных ускорителях.

Главная проблема с технологией LWFA заключается в необходимости создания лазеров петаваттной мощности с длительностью импульса порядка фемтосекунд (10-15). Подобные установки не отличаются компактностью и крайне сложны в эксплуатации. Для научных целей это приемлемо, но для массового использования — однозначно нет.

Однако даже если нужные лазеры будут созданы, остаётся ещё одна нерешённая проблема. На практике генерируемый таким образом свет отличается нестабильностью энергий отдельных частиц и широкими углами их расхождения. Хотя в целом свет получается когерентным и монохромным, управлять им чрезвычайно сложно. Также у молодой компании нет опыта создания литографических установок в целом, что либо заставит их обратиться к той же ASML (или к Canon и Nikon), либо потребует титанической работы по разработке с нуля собственной литографической установки. Обе перспективы представляются сомнительными, что вносит значительную долю неопределённости в судьбу проекта.

Помимо создания литографических установок компактный источник рентгеновского света можно использовать для неразрушающего контроля качества продукции, что уже заинтересовало компанию Tesla, а также для проверки полупроводниковых масок, что нашло понимание у компании Applied Materials. Остаётся надеяться, что рано или поздно необходимость уменьшить масштаб техпроцесса производства чипов или потребность в снижении себестоимости производства заставят обратить внимание на компактные ускорители частиц.

От admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *