Функция AI Overviews, встроенная в поисковую систему Google и использующая генеративный ИИ (GenAI) для кратких ответов на запросы, уверенно интерпретирует вымышленные идиомы. Пользователи обнаружили, что достаточно ввести произвольную фразу и добавить слово «meaning» (англ. — значение), чтобы получить уверенное объяснение смысла этой фразы, независимо от её реальности. Система при этом не только интерпретирует бессмысленные конструкции как устойчивые выражения, но и указывает предполагаемое происхождение, иногда даже снабжая ответ гиперссылками, усиливающими эффект достоверности.
В результате в интернете начали появляться примеры очевидных вымыслов, обработанных AI Overviews как подлинные фразеологизмы. Так, фраза «a loose dog won’t surf» (англ. — свободная собака не будет сёрфить) была истолкована как «шутливый способ выразить сомнение в осуществимости какого-либо события». Конструкция «wired is as wired does» (англ. — проводной — это то, что делают провода) ИИ объяснил как высказывание о том, что поведение человека определяется его природой, подобно тому как функции компьютера зависят от его схем. Даже фраза «never throw a poodle at a pig» (англ. — никогда не бросайте пуделя на свинью) была описана как пословица с библейским происхождением. Все эти объяснения звучали правдоподобно и были изложены AI Overviews с полной уверенностью.
На странице AI Overview внизу размещено уведомление о том, что в её основе используется «экспериментальный» генеративный ИИ. Такие ИИ-модели представляют собой вероятностные алгоритмы, в которых каждое последующее слово выбирается на основе максимально возможной предсказуемости, опираясь на данные обучения. Это позволяет создавать связные тексты, но не гарантирует фактологическую точность. Именно поэтому система оказывается способной логично объяснить, что могла бы означать фраза, даже если она лишена реального смысла. Однако это свойство приводит к созданию правдоподобных, но полностью вымышленных интерпретаций.
Как пояснил Цзян Сяо (Ziang Xiao), специалист в области компьютерных наук из Университета Джонса Хопкинса (JHU), предсказание слов в таких ИИ-моделях строится исключительно на статистике. Однако даже логически уместное слово не гарантирует достоверности ответа. Кроме того, генеративные ИИ-модели, по данным научных наблюдений, склонны угождать пользователю, адаптируя ответы к предполагаемым ожиданиям. Если система «видит» в запросе указание на то, что фраза вроде «you can’t lick a badger twice» (англ. — нельзя дважды лизнуть барсука) должна быть осмысленной, она интерпретирует её как таковую. Это поведение наблюдалось в исследовании под руководством Сяо в прошлом году.
Сяо подчёркивает, что такие сбои особенно вероятны в контекстах, где информации в обучающих данных недостаточно — это касается редких тем и языков с ограниченным числом текстов. Кроме того, ошибка может быть усилена каскадным распространением, поскольку поисковая система представляет собой сложный многоуровневый механизм. При этом ИИ редко признаёт своё незнание, поэтому, если ИИ сталкивается с ложной предпосылкой, он с высокой вероятностью выдаёт вымышленный, но правдоподобно звучащий ответ.
Представитель Google Мэганн Фарнсворт (Meghann Farnsworth) объяснила, что при поиске, основанном на абсурдных или несостоятельных предпосылках, система старается найти наиболее релевантный контент на основе ограниченных доступных данных. Это справедливо как для традиционного поиска, так и для AI Overviews, которая может активироваться в попытке предоставить полезный контекст. Тем не менее AI Overviews не срабатывает по каждому запросу. Как отметил когнитивист Гэри Маркус (Gary Marcus), система даёт непоследовательные результаты, поскольку GenAI зависит от конкретных примеров в обучающих выборках и не склоннен к абстрактному мышлению.